Parameter Reference

This page provides a comprehensive reference for all parameters used in VegasAfterglow, including their physical meanings, typical ranges, and units.

Physical Parameters

Jet Structure Parameters

Parameter

Symbol

Units

Typical Range

Description

E_iso

\(E_{\rm iso}\)

erg

\(10^{50} - 10^{54}\)

Isotropic-equivalent kinetic energy of the jet

Gamma0

\(\Gamma_0\)

dimensionless

\(10 - 1000\)

Initial bulk Lorentz factor of the jet

theta_c

\(\theta_c\)

radians

\(0.01 - 0.5\)

Half-opening angle of the jet core

theta_v

\(\theta_v\)

radians

\(0 - \pi/2\)

Viewing angle (angle between jet axis and line of sight)

duration

\(T_{\rm dur}\)

seconds

\(0.1 - 1000\)

Duration of energy injection (affects reverse shock)

k

\(k\)

dimensionless

\(1 - 10\)

Power-law index for structured jets (PowerLawJet only)

sigma0

\(\sigma_0\)

dimensionless

\(0.001 - 10\)

Initial magnetization parameter

Ambient Medium Parameters

Parameter

Symbol

Units

Typical Range

Description

n_ism

\(n_{\rm ISM}\)

cm⁻³

\(10^{-4} - 10^{3}\)

Number density of uniform ISM

A_star

\(A_*\)

dimensionless

\(10^{-3} - 10\)

Wind parameter: \(\rho = A_* \times 5 \times 10^{11} r^{-2}\) g/cm³

Observer Parameters

Parameter

Symbol

Units

Typical Range

Description

lumi_dist

\(d_L\)

cm

\(10^{26} - 10^{29}\)

Luminosity distance to the source

z

\(z\)

dimensionless

\(0.01 - 10\)

Cosmological redshift

Radiation Microphysics Parameters

Parameter

Symbol

Units

Typical Range

Description

eps_e

\(\epsilon_e\)

dimensionless

\(10^{-3} - 0.5\)

Fraction of shock energy in relativistic electrons

eps_B

\(\epsilon_B\)

dimensionless

\(10^{-6} - 0.5\)

Fraction of shock energy in magnetic field

p

\(p\)

dimensionless

\(2.01 - 3.5\)

Power-law index of electron energy distribution

xi_e

\(\xi_e\)

dimensionless

\(10^{-3} - 1\)

Electron acceleration efficiency

Energy Injection Parameters (Magnetar)

Parameter

Symbol

Units

Typical Range

Description

L_0

\(L_0\)

erg/s

\(10^{44} - 10^{48}\)

Initial luminosity of magnetar spin-down

t_0

\(t_0\)

seconds

\(10 - 10^4\)

Characteristic spin-down timescale

q

\(q\)

dimensionless

\(1 - 6\)

Power-law index of spin-down: \(L(t) = L_0(1+t/t_0)^{-q}\)

Two-Component Jet Parameters

Parameter

Symbol

Units

Typical Range

Description

theta_n

\(\theta_n\)

radians

\(0.01 - 0.2\)

Half-opening angle of narrow component

E_iso_n

\(E_{\rm iso,n}\)

erg

\(10^{51} - 10^{54}\)

Isotropic energy of narrow component

Gamma0_n

\(\Gamma_{0,n}\)

dimensionless

\(100 - 1000\)

Initial Lorentz factor of narrow component

theta_w

\(\theta_w\)

radians

\(0.1 - 0.5\)

Half-opening angle of wide component

E_iso_w

\(E_{\rm iso,w}\)

erg

\(10^{50} - 10^{53}\)

Isotropic energy of wide component

Gamma0_w

\(\Gamma_{0,w}\)

dimensionless

\(10 - 300\)

Initial Lorentz factor of wide component

Computational Parameters

Model Resolution

Parameter

Units

Description

phi_ppd

points/degree

Angular resolution in azimuthal direction

theta_ppd

points/degree

Angular resolution in polar direction

t_ppd

points/decade

Temporal resolution (logarithmic spacing)

MCMC Parameters

Parameter

Typical Value

Description

total_steps

1000-50000

Total number of MCMC steps per walker

burn_frac

0.2-0.5

Fraction of steps to discard as burn-in

thin

1-10

Thinning factor (keep every nth sample)

n_walkers

2×n_params to 10×n_params

Number of ensemble walkers

Parameter Scaling Types

Scale Type

Description and Usage

Scale.LOG

Sample in log₁₀ space. Use for parameters spanning multiple orders of magnitude (energies, densities, microphysics parameters)

Scale.LINEAR

Sample in linear space. Use for parameters with limited ranges (angles, power-law indices)

Scale.FIXED

Keep parameter fixed at initial value. Use when you don’t want to vary a parameter

Parameter Relationships and Constraints

Physical Constraints

Energy Conservation:

  • \(E_{\rm iso}\) should be consistent with the kinetic energy available from the central engine

  • For structured jets: \(E_{\rm iso} = \int E(\theta) d\Omega\) over the jet solid angle

Causality:

  • Light travel time sets minimum variability timescale: \(\delta t \geq R/c\Gamma^2\)

  • Jet opening angle and Lorentz factor: \(\theta_c \gtrsim 1/\Gamma_0\) for causal contact

Microphysics:

  • Energy fractions: \(\epsilon_e + \epsilon_B \leq 1\) (though often \(\ll 1\))

  • Electron power-law index: \(p > 2\) for finite energy in fast-cooling regime

Typical Parameter Combinations

Short GRB (Neutron Star Merger):

ParamDef("E_iso",     5e50,  5e52,  Scale.LOG),
ParamDef("Gamma0",    50,    500,   Scale.LOG),
ParamDef("theta_c",   0.05,  0.3,   Scale.LINEAR),
ParamDef("theta_v",   0.1,   0.5,   Scale.LINEAR),
ParamDef("eps_e",     0.01,  0.3,   Scale.LOG),
ParamDef("eps_B",     1e-4,  0.1,   Scale.LOG),
ParamDef("p",         2.1,   2.8,   Scale.LINEAR),

Long GRB (Collapsar):

ParamDef("E_iso",     1e52,  1e54,  Scale.LOG),
ParamDef("Gamma0",    100,   1000,  Scale.LOG),
ParamDef("theta_c",   0.02,  0.2,   Scale.LINEAR),
ParamDef("theta_v",   0.0,   0.1,   Scale.LINEAR),
ParamDef("eps_e",     0.1,   0.5,   Scale.LOG),
ParamDef("eps_B",     1e-3,  0.1,   Scale.LOG),
ParamDef("p",         2.2,   2.6,   Scale.LINEAR),

Kilonova-associated GRB:

ParamDef("E_iso",     1e49,  1e52,  Scale.LOG),
ParamDef("Gamma0",    10,    300,   Scale.LOG),
ParamDef("theta_c",   0.1,   0.5,   Scale.LINEAR),
ParamDef("theta_v",   0.2,   0.8,   Scale.LINEAR),
ParamDef("eps_e",     0.01,  0.3,   Scale.LOG),
ParamDef("eps_B",     1e-5,  1e-2,  Scale.LOG),
ParamDef("p",         2.1,   2.8,   Scale.LINEAR),

Unit Conversions

Common unit conversions for convenience:

Distance:

  • 1 Mpc = 3.086 × 10²⁴ cm

  • 1 kpc = 3.086 × 10²¹ cm

  • Luminosity distance: \(d_L = (1+z) \times d_A\) (angular diameter distance)

Energy:

  • 1 BeV = 1.602 × 10⁻³ erg

  • 1 keV = 1.602 × 10⁻⁹ erg

  • Solar rest mass energy: \(M_\odot c^2 = 1.8 \times 10^{54}\) erg

Angles:

  • 1 degree = π/180 ≈ 0.01745 radians

  • 1 arcminute = π/10800 ≈ 2.91 × 10⁻⁴ radians

  • 1 arcsecond = π/648000 ≈ 4.85 × 10⁻⁶ radians

Frequencies:

  • X-ray (1 keV): ν ≈ 2.4 × 10¹⁷ Hz

  • Optical (V-band): ν ≈ 5.5 × 10¹⁴ Hz

  • Radio (1 GHz): ν = 10⁹ Hz

Parameter Degeneracies

Understanding parameter correlations helps in MCMC fitting:

Strong Correlations:

  • \(E_{\rm iso}\)\(n_{\rm ISM}\): Higher energy can compensate for lower density

  • \(\epsilon_e\)\(\epsilon_B\): Microphysics parameters are often correlated

  • \(\theta_c\)\(\theta_v\): Jet geometry parameters affect observed flux similarly

Frequency-dependent Constraints:

  • Radio data: Most sensitive to \(\epsilon_B\), \(n_{\rm ISM}\)

  • Optical data: Constrains \(\epsilon_e\), \(p\), \(E_{\rm iso}\)

  • X-ray data: Sensitive to \(\Gamma_0\), high-frequency cutoffs

Time-dependent Constraints:

  • Early times (< 1 day): Constrain \(\Gamma_0\), \(\epsilon_e\)

  • Jet break time: Determines \(\theta_c\), \(E_{\rm iso}\)

  • Late times (> 100 days): Sensitive to \(n_{\rm ISM}\), \(p\)

For more detailed information on parameter estimation strategies, see the Examples page.