Parameter Reference
This page provides a comprehensive reference for all parameters used in VegasAfterglow, including their physical meanings, typical ranges, and units.
Physical Parameters
Jet Structure Parameters
Parameter |
Symbol |
Units |
Typical Range |
Description |
---|---|---|---|---|
|
\(E_{\rm iso}\) |
erg |
\(10^{50} - 10^{54}\) |
Isotropic-equivalent kinetic energy of the jet |
|
\(\Gamma_0\) |
dimensionless |
\(10 - 1000\) |
Initial bulk Lorentz factor of the jet |
|
\(\theta_c\) |
radians |
\(0.01 - 0.5\) |
Half-opening angle of the jet core |
|
\(\theta_v\) |
radians |
\(0 - \pi/2\) |
Viewing angle (angle between jet axis and line of sight) |
|
\(T_{\rm dur}\) |
seconds |
\(0.1 - 1000\) |
Duration of energy injection (affects reverse shock) |
|
\(k\) |
dimensionless |
\(1 - 10\) |
Power-law index for structured jets (PowerLawJet only) |
|
\(\sigma_0\) |
dimensionless |
\(0.001 - 10\) |
Initial magnetization parameter |
Ambient Medium Parameters
Parameter |
Symbol |
Units |
Typical Range |
Description |
---|---|---|---|---|
|
\(n_{\rm ISM}\) |
cm⁻³ |
\(10^{-4} - 10^{3}\) |
Number density of uniform ISM |
|
\(A_*\) |
dimensionless |
\(10^{-3} - 10\) |
Wind parameter: \(\rho = A_* \times 5 \times 10^{11} r^{-2}\) g/cm³ |
Observer Parameters
Parameter |
Symbol |
Units |
Typical Range |
Description |
---|---|---|---|---|
|
\(d_L\) |
cm |
\(10^{26} - 10^{29}\) |
Luminosity distance to the source |
|
\(z\) |
dimensionless |
\(0.01 - 10\) |
Cosmological redshift |
Radiation Microphysics Parameters
Parameter |
Symbol |
Units |
Typical Range |
Description |
---|---|---|---|---|
|
\(\epsilon_e\) |
dimensionless |
\(10^{-3} - 0.5\) |
Fraction of shock energy in relativistic electrons |
|
\(\epsilon_B\) |
dimensionless |
\(10^{-6} - 0.5\) |
Fraction of shock energy in magnetic field |
|
\(p\) |
dimensionless |
\(2.01 - 3.5\) |
Power-law index of electron energy distribution |
|
\(\xi_e\) |
dimensionless |
\(10^{-3} - 1\) |
Electron acceleration efficiency |
Energy Injection Parameters (Magnetar)
Parameter |
Symbol |
Units |
Typical Range |
Description |
---|---|---|---|---|
|
\(L_0\) |
erg/s |
\(10^{44} - 10^{48}\) |
Initial luminosity of magnetar spin-down |
|
\(t_0\) |
seconds |
\(10 - 10^4\) |
Characteristic spin-down timescale |
|
\(q\) |
dimensionless |
\(1 - 6\) |
Power-law index of spin-down: \(L(t) = L_0(1+t/t_0)^{-q}\) |
Two-Component Jet Parameters
Parameter |
Symbol |
Units |
Typical Range |
Description |
---|---|---|---|---|
|
\(\theta_n\) |
radians |
\(0.01 - 0.2\) |
Half-opening angle of narrow component |
|
\(E_{\rm iso,n}\) |
erg |
\(10^{51} - 10^{54}\) |
Isotropic energy of narrow component |
|
\(\Gamma_{0,n}\) |
dimensionless |
\(100 - 1000\) |
Initial Lorentz factor of narrow component |
|
\(\theta_w\) |
radians |
\(0.1 - 0.5\) |
Half-opening angle of wide component |
|
\(E_{\rm iso,w}\) |
erg |
\(10^{50} - 10^{53}\) |
Isotropic energy of wide component |
|
\(\Gamma_{0,w}\) |
dimensionless |
\(10 - 300\) |
Initial Lorentz factor of wide component |
Computational Parameters
Model Resolution
Parameter |
Units |
Description |
---|---|---|
|
points/degree |
Angular resolution in azimuthal direction |
|
points/degree |
Angular resolution in polar direction |
|
points/decade |
Temporal resolution (logarithmic spacing) |
MCMC Parameters
Parameter |
Typical Value |
Description |
---|---|---|
|
1000-50000 |
Total number of MCMC steps per walker |
|
0.2-0.5 |
Fraction of steps to discard as burn-in |
|
1-10 |
Thinning factor (keep every nth sample) |
|
2×n_params to 10×n_params |
Number of ensemble walkers |
Parameter Scaling Types
Scale Type |
Description and Usage |
---|---|
|
Sample in log₁₀ space. Use for parameters spanning multiple orders of magnitude (energies, densities, microphysics parameters) |
|
Sample in linear space. Use for parameters with limited ranges (angles, power-law indices) |
|
Keep parameter fixed at initial value. Use when you don’t want to vary a parameter |
Parameter Relationships and Constraints
Physical Constraints
Energy Conservation:
\(E_{\rm iso}\) should be consistent with the kinetic energy available from the central engine
For structured jets: \(E_{\rm iso} = \int E(\theta) d\Omega\) over the jet solid angle
Causality:
Light travel time sets minimum variability timescale: \(\delta t \geq R/c\Gamma^2\)
Jet opening angle and Lorentz factor: \(\theta_c \gtrsim 1/\Gamma_0\) for causal contact
Microphysics:
Energy fractions: \(\epsilon_e + \epsilon_B \leq 1\) (though often \(\ll 1\))
Electron power-law index: \(p > 2\) for finite energy in fast-cooling regime
Typical Parameter Combinations
Short GRB (Neutron Star Merger):
ParamDef("E_iso", 5e50, 5e52, Scale.LOG),
ParamDef("Gamma0", 50, 500, Scale.LOG),
ParamDef("theta_c", 0.05, 0.3, Scale.LINEAR),
ParamDef("theta_v", 0.1, 0.5, Scale.LINEAR),
ParamDef("eps_e", 0.01, 0.3, Scale.LOG),
ParamDef("eps_B", 1e-4, 0.1, Scale.LOG),
ParamDef("p", 2.1, 2.8, Scale.LINEAR),
Long GRB (Collapsar):
ParamDef("E_iso", 1e52, 1e54, Scale.LOG),
ParamDef("Gamma0", 100, 1000, Scale.LOG),
ParamDef("theta_c", 0.02, 0.2, Scale.LINEAR),
ParamDef("theta_v", 0.0, 0.1, Scale.LINEAR),
ParamDef("eps_e", 0.1, 0.5, Scale.LOG),
ParamDef("eps_B", 1e-3, 0.1, Scale.LOG),
ParamDef("p", 2.2, 2.6, Scale.LINEAR),
Kilonova-associated GRB:
ParamDef("E_iso", 1e49, 1e52, Scale.LOG),
ParamDef("Gamma0", 10, 300, Scale.LOG),
ParamDef("theta_c", 0.1, 0.5, Scale.LINEAR),
ParamDef("theta_v", 0.2, 0.8, Scale.LINEAR),
ParamDef("eps_e", 0.01, 0.3, Scale.LOG),
ParamDef("eps_B", 1e-5, 1e-2, Scale.LOG),
ParamDef("p", 2.1, 2.8, Scale.LINEAR),
Unit Conversions
Common unit conversions for convenience:
Distance:
1 Mpc = 3.086 × 10²⁴ cm
1 kpc = 3.086 × 10²¹ cm
Luminosity distance: \(d_L = (1+z) \times d_A\) (angular diameter distance)
Energy:
1 BeV = 1.602 × 10⁻³ erg
1 keV = 1.602 × 10⁻⁹ erg
Solar rest mass energy: \(M_\odot c^2 = 1.8 \times 10^{54}\) erg
Angles:
1 degree = π/180 ≈ 0.01745 radians
1 arcminute = π/10800 ≈ 2.91 × 10⁻⁴ radians
1 arcsecond = π/648000 ≈ 4.85 × 10⁻⁶ radians
Frequencies:
X-ray (1 keV): ν ≈ 2.4 × 10¹⁷ Hz
Optical (V-band): ν ≈ 5.5 × 10¹⁴ Hz
Radio (1 GHz): ν = 10⁹ Hz
Parameter Degeneracies
Understanding parameter correlations helps in MCMC fitting:
Strong Correlations:
\(E_{\rm iso}\) ↔ \(n_{\rm ISM}\): Higher energy can compensate for lower density
\(\epsilon_e\) ↔ \(\epsilon_B\): Microphysics parameters are often correlated
\(\theta_c\) ↔ \(\theta_v\): Jet geometry parameters affect observed flux similarly
Frequency-dependent Constraints:
Radio data: Most sensitive to \(\epsilon_B\), \(n_{\rm ISM}\)
Optical data: Constrains \(\epsilon_e\), \(p\), \(E_{\rm iso}\)
X-ray data: Sensitive to \(\Gamma_0\), high-frequency cutoffs
Time-dependent Constraints:
Early times (< 1 day): Constrain \(\Gamma_0\), \(\epsilon_e\)
Jet break time: Determines \(\theta_c\), \(E_{\rm iso}\)
Late times (> 100 days): Sensitive to \(n_{\rm ISM}\), \(p\)
For more detailed information on parameter estimation strategies, see the Examples page.