Parameter Reference

This page provides a comprehensive reference for all parameters used in VegasAfterglow, including their physical meanings, typical ranges, and units. All parameters listed here are available in the code and can be set via Python interfaces.

Physical Parameters

Observer Parameters

Parameter

Symbol

Units

Typical Range

Description

lumi_dist

\(d_L\)

cm

\(10^{26} - 10^{29}\)

Luminosity distance to the source

z

\(z\)

dimensionless

\(0.01 - 10\)

Cosmological redshift

theta_v

\(\theta_v\)

radians

\(0 - \pi/2\)

Viewing angle (angle between jet axis and line of sight)

Jet Structure Parameters

Parameter

Symbol

Units

Typical Range

Description

E_iso

\(E_{\rm iso}\)

erg

\(10^{50} - 10^{54}\)

Isotropic-equivalent kinetic energy of the jet

Gamma0

\(\Gamma_0\)

dimensionless

\(10 - 1000\)

Initial bulk Lorentz factor of the jet

theta_c

\(\theta_c\)

radians

\(0.01 - 0.5\)

Half-opening angle of the jet core

duration

\(T_{\rm dur}\)

seconds

\(0.1 - 1000\)

Duration of energy injection (affects reverse shock)

k_e

\(k_e\)

dimensionless

\(1 - 10\)

Energy power-law index for structured jets (PowerLawJet only)

k_g

\(k_g\)

dimensionless

\(1 - 10\)

Lorentz factor power-law index for structured jets (PowerLawJet only)

Two-Component Jet Parameters

Parameter

Symbol

Units

Typical Range

Description

theta_w

\(\theta_w\)

radians

\(0.1 - 0.5\)

Half-opening angle of wide component

E_iso_w

\(E_{\rm iso,w}\)

erg

\(10^{50} - 10^{53}\)

Isotropic energy of wide component

Gamma0_w

\(\Gamma_{0,w}\)

dimensionless

\(10 - 300\)

Initial Lorentz factor of wide component

Ambient Medium Parameters

Parameter

Symbol

Units

Typical Range

Description

n_ism

\(n_{\rm ISM}\)

cm⁻³

\(10^{-4} - 10^{3}\)

Number density of uniform ISM

n0

\(n0\)

cm⁻³

\(10^{-4} - 10^{6}\)

Inner region number density for wind medium

A_star

\(A_*\)

dimensionless

\(10^{-3} - 10\)

Wind parameter: \(\rho = A_* \times 5 \times 10^{11} r^{-2}\) g/cm³

Forward Shock Radiation Parameters

Parameter

Symbol

Units

Typical Range

Description

eps_e

\(\epsilon_e\)

dimensionless

\(10^{-3} - 0.5\)

Fraction of shock energy in relativistic electrons

eps_B

\(\epsilon_B\)

dimensionless

\(10^{-6} - 0.5\)

Fraction of shock energy in magnetic field

p

\(p\)

dimensionless

\(2.01 - 3.5\)

Power-law index of electron energy distribution

xi_e

\(\xi_e\)

dimensionless

\(10^{-3} - 1\)

Fraction of electrons that are accelerated

Reverse Shock Radiation Parameters

Parameter

Symbol

Units

Typical Range

Description

eps_e_r

\(\epsilon_{e,r}\)

dimensionless

\(10^{-3} - 0.5\)

Reverse shock fraction of energy in electrons

eps_B_r

\(\epsilon_{B,r}\)

dimensionless

\(10^{-6} - 0.5\)

Reverse shock fraction of energy in magnetic field

p_r

\(p_r\)

dimensionless

\(2.01 - 3.5\)

Reverse shock electron energy distribution index

xi_e_r

\(\xi_{e,r}\)

dimensionless

\(10^{-3} - 1\)

Reverse shock electron acceleration fraction

Energy Injection Parameters (Magnetar)

Parameter

Symbol

Units

Typical Range

Description

L0

\(L_0\)

erg/s

\(10^{44} - 10^{48}\)

Magnetar luminosity at time t₀

t0

\(t_0\)

seconds

\(10 - 10^4\)

Characteristic magnetar spin-down timescale

q

\(q\)

dimensionless

\(1 - 6\)

Power-law index of spin-down: \(L(t) = L_0(1+t/t_0)^{-q}\)

Model Configuration

Jet Types

Jet Type

Description

tophat

Uniform energy and Lorentz factor within opening angle

gaussian

Gaussian angular profile for energy and Lorentz factor

powerlaw

Power-law angular dependence with indices k_e and k_g

two_component

Two-component jet with narrow core and wide wing components

step_powerlaw

Uniform core with sharp transition to power-law wing

ejecta

Generic ejecta with arbitrary angular profiles

Medium Types

Medium Type

Description

ism

Uniform interstellar medium with constant density n_ism

wind

Stellar wind medium with \(\rho \propto r^{-2}\) profile

Physics Switches

Parameter

Default

Description

rvs_shock

false

Include reverse shock emission

fwd_ssc

false

Include forward shock synchrotron self-Compton

rvs_ssc

false

Include reverse shock synchrotron self-Compton

ssc_cooling

false

Include inverse Compton cooling

kn

false

Use Klein-Nishina cross-section for IC scattering

magnetar

false

Include magnetar energy injection

Computational Parameters

Grid Resolution

Parameter

Default

Units

Description

phi_resol

0.3

points/degree

Angular resolution in azimuthal direction

theta_resol

1.0

points/degree

Angular resolution in polar direction

t_resol

10.0

points/decade

Temporal resolution (logarithmic spacing)

Numerical Parameters

Parameter

Default

Description

rtol

1e-6

Relative tolerance for numerical integration

MCMC Parameters

Parameter

Typical Value

Description

total_steps

1000-50000

Total number of MCMC steps per walker

burn_frac

0.2-0.5

Fraction of steps to discard as burn-in

thin

1-10

Thinning factor (keep every nth sample)

n_walkers

2×n_params to 10×n_params

Number of ensemble walkers

Parameter Scaling Types

Scale Type

Description and Usage

Scale.LOG

Sample in log₁₀ space. Use for parameters spanning multiple orders of magnitude (energies, densities, microphysics parameters)

Scale.LINEAR

Sample in linear space. Use for parameters with limited ranges (angles, power-law indices)

Scale.FIXED

Keep parameter fixed at initial value. Use when you don’t want to vary a parameter

Parameter Relationships and Constraints

Physical Constraints

Energy Conservation:

  • \(E_{\rm iso}\) should be consistent with the kinetic energy available from the central engine

Causality:

  • Light travel time sets minimum variability timescale: \(\delta t \geq R/c\Gamma^2\)

  • Jet opening angle and Lorentz factor: \(\theta_c \gtrsim 1/\Gamma_0\) for causal contact

Microphysics:

  • Energy fractions: \(\epsilon_e + \epsilon_B \leq 1\) (though often \(\ll 1\))

  • Electron power-law index: \(p > 2\) for finite energy in fast-cooling regime

Unit System and Physical Constants

VegasAfterglow uses a normalized unit system defined in macros.h:

Base Units: - Length: \(l_0 = 1.5 \times 10^{13}\) cm - Time: \(t_0 = l_0/c = 500\) s - Mass: \(m_0 = 2 \times 10^{33}\) g

Physical Constants (code units): - Speed of light: \(c = 1\) - Proton mass: \(m_p = 1.67 \times 10^{-24}\) g - Electron mass: \(m_e = m_p/1836\) - Thomson cross-section: \(\sigma_T = 6.65 \times 10^{-25}\) cm²

Cosmological Parameters: - \(\Omega_m = 0.27\) (matter density) - \(\Omega_\Lambda = 0.73\) (dark energy density) - \(H_0 = 67.66\) km/s/Mpc (Hubble constant)

Common Unit Conversions

Distance: - 1 Mpc = 3.086 × 10²⁴ cm - 1 kpc = 3.086 × 10²¹ cm - 1 AU = 1.5 × 10¹³ cm

Energy: - 1 erg = 1 g⋅cm²/s² - 1 keV = 1.602 × 10⁻⁹ erg - 1 GeV = 1.602 × 10⁻³ erg

Angles: - 1 degree = π/180 ≈ 0.01745 radians - 1 arcminute = π/10800 ≈ 2.91 × 10⁻⁴ radians

Parameter Degeneracies and Fitting Strategies

Understanding parameter correlations helps in MCMC fitting:

Strong Correlations:

  • \(E_{\rm iso}\)\(n_{\rm ISM}\): Higher energy can compensate for lower density

  • \(\epsilon_e\)\(\epsilon_B\): Microphysics parameters are often correlated

  • \(\theta_c\)\(\theta_v\): Jet geometry parameters affect observed flux similarly

Frequency-dependent Constraints:

  • Radio data: Most sensitive to \(\epsilon_B\), \(n_{\rm ISM}\)

  • Optical data: Constrains \(\epsilon_e\), \(p\), \(E_{\rm iso}\)

  • X-ray data: Sensitive to \(\Gamma_0\), high-frequency cutoffs

Time-dependent Constraints:

  • Early times (< 1 day): Constrain \(\Gamma_0\), \(\epsilon_e\)

  • Jet break time: Determines \(\theta_c\), \(E_{\rm iso}\)

  • Late times (> 100 days): Sensitive to \(n_{\rm ISM}\), \(p\)

For more detailed information on parameter estimation strategies and examples of using these parameters in practice, see the Examples and MCMC Parameter Fitting pages.