Quickstart

This guide will help you get started with VegasAfterglow quickly. We’ll cover basic installation, setting up a simple model, and running your first afterglow parameter estimation.

Installation

The easiest way to install VegasAfterglow is via pip:

pip install VegasAfterglow

For more detailed installation instructions, see the Installation page.

Basic Usage

VegasAfterglow is designed to efficiently model gamma-ray burst (GRB) afterglows and perform Markov Chain Monte Carlo (MCMC) parameter estimation.

Direct Model Calculation

Before diving into MCMC parameter estimation, you can directly use VegasAfterglow to generate light curves and spectra from a specific model. Let’s start by importing the necessary modules:

import numpy as np
import matplotlib.pyplot as plt
from VegasAfterglow import ISM, TophatJet, Observer, Radiation, Model

Then, let’s set up the physical components of our afterglow model, including the environment, jet, observer, and radiation parameters:

# 1. Define the circumburst environment (constant density ISM)
medium = ISM(n_ism=1) # in cgs unit

# 2. Configure the jet structure (top-hat with opening angle, energy, and Lorentz factor)
jet = TophatJet(theta_c=0.1, E_iso=1e52, Gamma0=300) # in cgs unit

# 3. Set observer parameters (distance, redshift, viewing angle)
obs = Observer(lumi_dist=1e26, z=0.1, theta_obs=0) # in cgs unit

# 4. Define radiation microphysics parameters
rad = Radiation(eps_e=1e-1, eps_B=1e-3, p=2.3)

# 5. Combine all components into a complete afterglow model
model = Model(jet=jet, medium=medium, observer=obs, forward_rad=rad)

Light Curve Calculation

Now, let’s compute and plot multi-wavelength light curves to see how the afterglow evolves over time:

# 1. Create logarithmic time array from 10² to 10⁸ seconds (100s to ~3yrs)
times = np.logspace(2, 8, 200)

# 2. Define observing frequencies (radio, optical, X-ray bands in Hz)
bands = np.array([1e9, 1e14, 1e17])

# 3. Calculate the afterglow emission at each time and frequency
results = model.specific_flux(times, bands)

# 4. Visualize the multi-wavelength light curves
plt.figure(figsize=(4.8, 3.6), dpi=200)

# 5. Plot each frequency band
for i, nu in enumerate(bands):
    exp = int(np.floor(np.log10(nu)))
    base = nu / 10**exp
    plt.loglog(times, results['syn'][i,:], label=fr'${base:.1f} \times 10^{{{exp}}}$ Hz')

# 6. Add annotations for important transitions
def add_note(plt):
    plt.annotate('jet break',xy=(3e4, 1e-26), xytext=(3e3, 5e-28), arrowprops=dict(arrowstyle='->'))
    plt.annotate(r'$\nu_m=\nu_a$',xy=(6e5, 3e-25), xytext=(7.5e4, 5e-24), arrowprops=dict(arrowstyle='->'))
    plt.annotate(r'$\nu=\nu_a$',xy=(1.5e6, 4e-25), xytext=(7.5e5, 5e-24), arrowprops=dict(arrowstyle='->'))

add_note(plt)

plt.xlabel('Time (s)')
plt.ylabel('Flux Density (erg/cm²/s/Hz)')
plt.legend()
plt.title('Light Curves')
plt.tight_layout()
plt.savefig('assets/quick-lc.png', dpi=300)
_images/quick-lc.png

Running the light curve script will produce this figure showing the afterglow evolution across different frequencies.

Spectral Analysis

We can also examine how the broadband spectrum evolves at different times after the burst:

# 1. Define broad frequency range (10⁵ to 10²² Hz)
frequencies = np.logspace(5, 22, 200)

# 2. Select specific time epochs for spectral snapshots
epochs = np.array([1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8])

# 3. Calculate spectra at each epoch
results = model.spectra(frequencies, epochs)

# 4. Plot broadband spectra at each epoch
plt.figure(figsize=(4.8, 3.6), dpi=200)
colors = plt.cm.viridis(np.linspace(0, 1, len(epochs)))

for i, t in enumerate(epochs):
    exp = int(np.floor(np.log10(t)))
    base = t / 10**exp
    plt.loglog(frequencies, results['syn'][i,:], color=colors[i],
              label=fr'${base:.1f} \times 10^{{{exp}}}$ s')

# 5. Add vertical lines marking the bands from the light curve plot
for i, band in enumerate(bands):
    plt.axvline(band, ls='--', color=f'C{i}')

plt.xlabel('Frequency (Hz)')
plt.ylabel('Flux Density (erg/cm²/s/Hz)')
plt.legend(ncol=2)
plt.title('Synchrotron Spectra')
plt.tight_layout()
plt.savefig('assets/quick-spec.png', dpi=300)
_images/quick-spec.png

The spectral analysis code will generate this visualization showing spectra at different times, with vertical lines indicating the frequencies calculated in the light curve example.

Parameter Estimation with MCMC

For more advanced analysis, VegasAfterglow provides powerful MCMC capabilities to fit model parameters to observational data.

First, let’s import the necessary modules:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import corner
from VegasAfterglow import ObsData, Setups, Fitter, ParamDef, Scale

Preparing Data and Configuring the Model

VegasAfterglow provides flexible options for loading observational data through the ObsData class. You can add light curves (specific flux vs. time) and spectra (specific flux vs. frequency) in multiple ways:

# Create an instance to store observational data
data = ObsData()

# Method 1: Add data directly from lists or numpy arrays

# For light curves
t_data = [1e3, 2e3, 5e3, 1e4, 2e4]  # Time in seconds
flux_data = [1e-26, 8e-27, 5e-27, 3e-27, 2e-27]  # Specific flux in erg/cm²/s/Hz
flux_err = [1e-28, 8e-28, 5e-28, 3e-28, 2e-28]  # Specific flux error in erg/cm²/s/Hz
data.add_light_curve(nu_cgs=4.84e14, t_cgs=t_data, Fnu_cgs=flux_data, Fnu_err=flux_err)

# For spectra
nu_data = [...]  # Frequencies in Hz
spectrum_data = [...] # Specific flux values in erg/cm²/s/Hz
spectrum_err = [...]   # Specific flux errors in erg/cm²/s/Hz
data.add_spectrum(t_cgs=3000, nu_cgs=nu_data, Fnu_cgs=spectrum_data, Fnu_err=spectrum_err)
# Method 2: Load from CSV files
data = ObsData()
# Define your bands and files
bands = [2.4e17, 4.84e14, 1.4e14]  # Example: X-ray, optical R-band
lc_files = ["data/ep.csv", "data/r.csv", "data/vt-r.csv"]

# Load light curves from files
for nu, fname in zip(bands, lc_files):
    df = pd.read_csv(fname)
    data.add_light_curve(nu_cgs=nu, t_cgs=df["t"], Fnu_cgs=df["Fv_obs"], Fnu_err=df["Fv_err"])

times = [3000] # Example: time in seconds
spec_files = ["data/ep-spec.csv"]

# Load spectra from files
for t, fname in zip(times, spec_files):
    df = pd.read_csv(fname)
    data.add_spectrum(t_cgs=t, nu_cgs=df["nu"], Fnu_cgs=df["Fv_obs"], Fnu_err=df["Fv_err"])

Note

The ObsData interface is designed to be flexible. You can mix and match different data sources, and add multiple light curves at different frequencies as well as multiple spectra at different times.

The Setups class defines the global properties and environment for your model. These settings remain fixed during the MCMC process:

cfg = Setups()

# Source properties
cfg.lumi_dist = 3.364e28    # Luminosity distance [cm]
cfg.z = 1.58               # Redshift

# Physical model configuration
cfg.medium = "wind"        # Ambient medium: "wind", "ISM" (Interstellar Medium) or "user" (user-defined)
cfg.jet = "powerlaw"       # Jet structure: "powerlaw", "gaussian", "tophat" or "user" (user-defined)

These settings affect how the model is calculated but are not varied during the MCMC process.

Defining Parameters and Running MCMC

The ParamDef class is used to define the parameters for MCMC exploration. Each parameter requires a name, initial value, prior range, and sampling scale:

mc_params = [
    ParamDef("E_iso",    1e52,  1e50,  1e54,  Scale.LOG),       # Isotropic energy [erg]
    ParamDef("Gamma0",     30,     5,  1000,  Scale.LOG),       # Lorentz factor at the core
    ParamDef("theta_c",   0.2,   0.0,   0.5,  Scale.LINEAR),    # Core half-opening angle [rad]
    ParamDef("theta_v",    0.,  None,  None,  Scale.FIXED),     # Viewing angle [rad]
    ParamDef("p",         2.5,     2,     3,  Scale.LINEAR),    # Shocked electron power law index
    ParamDef("eps_e",     0.1,  1e-2,   0.5,  Scale.LOG),       # Electron energy fraction
    ParamDef("eps_B",    1e-2,  1e-4,   0.5,  Scale.LOG),       # Magnetic field energy fraction
    ParamDef("A_star",   0.01,  1e-3,     1,  Scale.LOG),       # Wind parameter
    ParamDef("xi",        0.5,  1e-3,     1,  Scale.LOG),       # Electron acceleration fraction
]
Scale Types:
  • Scale.LOG: Sample in logarithmic space (log10) - ideal for parameters spanning multiple orders of magnitude

  • Scale.LINEAR: Sample in linear space - appropriate for parameters with narrower ranges

  • Scale.FIXED: Keep parameter fixed at the initial value - use for parameters you don’t want to vary

Parameter Choices: The parameters you include depend on your model configuration:

  • For “wind” medium: use A_star parameter

  • For “ISM” medium: use n_ism parameter instead

  • Different jet structures may require different parameters

Initialize the Fitter class with your data and configuration, then run the MCMC process:

# Create the fitter object
fitter = Fitter(data, cfg)

# Run the MCMC fitting
result = fitter.fit(
    param_defs=mc_params,          # Parameter definitions
    resolution=(0.1, 1, 5),        # Grid resolution (see more details in `Examples`)
    total_steps=10000,             # Total number of MCMC steps
    burn_frac=0.3,                 # Fraction of steps to discard as burn-in
    thin=1                         # Thinning factor
)
The result object contains:
  • samples: The MCMC chain samples (posterior distribution)

  • labels: Parameter names

  • best_params: Maximum likelihood parameter values

Analyzing Results and Generating Predictions

Check the best-fit parameters and their uncertainties:

# Print best-fit parameters (maximum likelihood)
print("Best-fit parameters:")
for name, val in zip(result.labels, result.best_params):
    print(f"  {name}: {val:.4f}")

# Compute median and credible intervals
flat_chain = result.samples.reshape(-1, result.samples.shape[-1])
medians = np.median(flat_chain, axis=0)
lower = np.percentile(flat_chain, 16, axis=0)
upper = np.percentile(flat_chain, 84, axis=0)

print("\nParameter constraints (median and 68% credible intervals):")
for i, name in enumerate(result.labels):
    print(f"  {name}: {medians[i]:.4f} (+{upper[i]-medians[i]:.4f}, -{medians[i]-lower[i]:.4f})")

Use the best-fit parameters to generate model predictions:

# Define time and frequency ranges for predictions
t_out = np.logspace(2, 9, 150)
bands = [2.4e17, 4.84e14, 1.4e14]

# Generate light curves with the best-fit model
lc_best = fitter.light_curves(result.best_params, t_out, bands)

nu_out = np.logspace(6, 20, 150)
times = [3000]
# Generate model spectra at the specified times using the best-fit parameters
spec_best = fitter.spectra(result.best_params, nu_out, times)

Now you can plot the best-fit model:

def draw_bestfit(t, lc_fit, nu, spec_fit):
    # Create figure with two subplots
    fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(4.5, 7.5))

    # Plot light curves
    shifts = [1, 1, 200]
    colors = ['blue', 'orange', 'green']

    for i in range(len(lc_files)):
        df = pd.read_csv(lc_files[i])
        ax1.errorbar(df["t"], df["Fv_obs"] * shifts[i], df["Fv_err"] * shifts[i],
                    fmt='o', color=colors[i], label=lc_files[i])
        ax1.plot(t, np.array(lc_fit[i]) * shifts[i], color=colors[i], lw=1)

    # Plot spectra
    for i in range(len(spec_files)):
        df = pd.read_csv(spec_files[i])
        ax2.errorbar(df["nu"], df["Fv_obs"] * shifts[i], df["Fv_err"] * shifts[i],
                    fmt='o', color=colors[i], label=spec_files[i])
        ax2.plot(nu, np.array(spec_fit[0]) * shifts[i], color=colors[i], lw=1)

    # Configure axes
    for ax, xlabel, ylabel in [(ax1, 't [s]', r'$F_\nu$ [erg/cm$^2$/s/Hz]'),
                              (ax2, r'$\nu$ [Hz]', r'$F_\nu$ [erg/cm$^2$/s/Hz]')]:
        ax.set_xscale('log'); ax.set_yscale('log')
        ax.set_xlabel(xlabel); ax.set_ylabel(ylabel)
        ax.legend()

    plt.tight_layout()

draw_bestfit(t_out, lc_best, nu_out, spec_best)

Corner plots are essential for visualizing parameter correlations and posterior distributions:

def plot_corner(flat_chain, labels, filename="corner_plot.png"):
    fig = corner.corner(
        flat_chain,
        labels=labels,
        quantiles=[0.16, 0.5, 0.84],  # For median and ±1σ
        show_titles=True,
        title_kwargs={"fontsize": 14},
        label_kwargs={"fontsize": 14},
        truths=np.median(flat_chain, axis=0),  # Show median values
        truth_color='red',
        bins=30,
        smooth=1,
        fill_contours=True,
        levels=[0.16, 0.5, 0.68],  # 1σ and 2σ contours
        color='k'
    )
    fig.savefig(filename, dpi=300, bbox_inches='tight')

# Create the corner plot
flat_chain = result.samples.reshape(-1, result.samples.shape[-1])
plot_corner(flat_chain, result.labels)

Next Steps

See the Examples page for more detailed examples